翻訳と辞書
Words near each other
・ Shimagahara, Mie
・ Shimagawa Dam
・ Shimajigawa Dam
・ Shimajiri District, Okinawa
・ Shimajiro to Kujira no Uta
・ Shimajirō to Ōkina Ki
・ Shimaki Kensaku
・ Shimako
・ Shimako Satō
・ Shimal
・ Shimaliw' Osatana
・ Shimama
・ Shimamaki District, Hokkaido
・ Shimamaki, Hokkaido
・ Shilov
Shilov boundary
・ Shilov system
・ Shilovo
・ Shilovsky
・ Shilovsky (rural locality)
・ Shilovsky District
・ Shilp Guru
・ Shilpa
・ Shilpa Anand
・ Shilpa Architects
・ Shilpa Gupta
・ Shilpa Raju
・ Shilpa Rao
・ Shilpa Ray and Her Happy Hookers
・ Shilpa Sakhlani


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Shilov boundary : ウィキペディア英語版
Shilov boundary
In functional analysis, a branch of mathematics, the Shilov boundary is the smallest closed subset of the structure space of a commutative Banach algebra where an analog of the maximum modulus principle holds. It is named after its discoverer, Georgii Evgen'evich Shilov.
== Precise definition and existence ==
Let \mathcal A be a commutative Banach algebra and let \Delta \mathcal A be its structure space equipped with the relative weak
*-topology
of the dual ^
*. A closed (in this topology) subset F of \Delta is called a boundary of if \max_ |x(f)| for all x \in \mathcal A.
The set S=\bigcap\\} is called the Shilov boundary. It has been proved by Shilov〔Theorem 4.15.4 in Einar Hille, Ralph S. Phillips: (Functional analysis and semigroups ). -- AMS, Providence 1957.〕 that S is a boundary of .
Thus one may also say that Shilov boundary is the unique set S \subset \Delta \mathcal A which satisfies
#S is a boundary of \mathcal A, and
#whenever F is a boundary of \mathcal A, then S \subset F.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Shilov boundary」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.